1310

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2010

A Low-Power DSP for Wireless Communications

Hyunseok Lee, Member, IEEE, Chaitali Chakrabarti, Senior Member, IEEE, and Trevor Mudge, Fellow, IEEE

Abstract—This paper proposes a low-power high-throughput
digital signal processor (DSP) for baseband processing in wireless
terminals. It builds on our earlier architecture—Signal processing
On Demand Architecture (SODA)—which is a four-processor,
32-lane SIMD machine that was optimized for WCDMA 2 Mbps
and IEEE 802.11a. SODA has several shortcomings including
large register file power, wasted cycles for data alignment, etc.,
and cannot satisfy the higher throughput and lower power re-
quirements of emerging standards. We propose SODA-II, which
addresses these problems by deploying the following schemes:
operation chaining, pipelined execution of SIMD units, staggered
memory access, and multicycling of computation units. Operation
chaining involves chaining the primitive instructions, thereby
eliminating unnecessary register file accesses and saving power.
Pipelined execution of the vector instructions through the SIMD
units improves the system throughput. Staggered execution of
computation units helps simplify the data alignment networks.
It is implemented in conjunction with multicycling so that the
computation units are busy most of the time. The proposed archi-
tecture is evaluated with an in-house architecture emulator which
uses component-level area and power models built with Synopsys
and Artisan tools. Our results show that for WCDMA 2 Mbps,
the proposed architecture uses two processors and consumes
only 120 mW while SODA uses four processors and consumes
210 mW when implemented in 0.13-xm technology and clocked
at 300 MHz.

Index Terms—Baseband processor, digital signal processing
(DP), low power, programmable, SIMD, software-defined radio
(SDR).

I. INTRODUCTION

ECENT years have seen an emergence of a large number
R of protocols that cater to different types of wireless com-
munication networks. In these protocols, baseband processing is
one of the most computationally demanding parts and is usually
realized with ASICs for power efficiency. But ASIC-based hard-
wired solutions are costly because of the large number of ex-
isting and upcoming wireless standards. Software-defined radio
(SDR) provides a cost-effective and flexible solution for imple-
menting multiple wireless protocols in software. In this paper,
we present a programmable, high-throughput, low-power pro-
cessor for baseband processing. Designing such a processor is

Manuscript received September 18, 2008; revised May 14, 2009; accepted
May 14, 2009. First published October 09, 2009; current version published
August 25, 2010.

H. Lee is with the Department of Electronics and Communications
Engineering, Kwangwoon University, 139-701 Seoul, Korea (e-mail:
hyunseok @kw.ac.kr).

C. Chakrabarti is with the Department of Electrical Engineering, Arizona
State University, Tempe, AZ 85287-5706 USA (e-mail: chaitali@asu.edu).

T. Mudge is with the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI 48105-2122 USA (e-mail:
tnm@eecs.umich.edu).

Digital Object Identifier 10.1109/TVLSI.2009.2023547

challenging, because programmability is usually achieved at the
cost of energy efficiency.

Several programmable architectures have been proposed for
baseband processing that achieve high energy efficiency by
exploiting the inherent parallelism in many of the algorithms.
Data-level parallelism (DLP) has been exploited efficiently
in a number of the existing SIMD-based architectures such
as Infineon’s MUSIC [1], Analog Devices’ TigerSHARC [2],
Icera’s DXP [3], NXP’s EVP [4], SandBridge’s SandBlaster
[5], Linkoping’s SIMT [6], and Michigan’s SODA [7]. There
also exists some degree of thread-level parallelism (TLP) which
has been supported by SandBlaster [5], SIMT [6], and SODA
[7]. In addition, there are heterogeneous SDR architectures
that support fine-grained parallelism such as PicoArray [8]
and XiRisc [9], or coarse-grain parallelism such as Intel RCA
[10], QuickSilver [11], Montium [12], and ADRES [13]. In
this paper we present a programmable baseband processor,
SODA-II, that takes advantage of the inherent parallelism in
novel ways to further increase energy efficiency for current and
emerging standards.

Previously we developed a low-power programmable multi-
processor architecture, Signal processing On Demand Architec-
ture (SODA) [7], for supporting wireless baseband processing
protocols such as W-CDMA 2 Mbps [14] and IEEE 802.11a
[15]. Each processor consists of a 16-bit and 32-lane SIMD
datapath to handle the vector computations, a scalar datapath,
scratch pad memories, address generation unit, and DMA sup-
port. The main drawbacks of SODA are that it spends a signifi-
cant amount of time on noncomputational operations such as re-
aligning data through a shuffle network and performing a large
number of register file accesses. This is quite typical of wide
SIMD architectures, and similar observations have been made
in [16] and [17].

In order to design the next generation of low-power signal
processors with higher throughput and lower power, we need to
reevaluate the interaction between algorithms and architecture.
Our analysis of the workload characteristics of the wireless
protocols revealed that the majority of baseband processing
is implemented by the following vector algorithm kernels:
finite impulse response (FIR) filters, pattern matching, min-
imum/maximum finding, fast Fourier transforms (FFT), and
the Viterbi operations of branch metric computation (BMC)
and add-compare-select (ACS). These kernels can be further
decomposed into five primitive vector operations of data load,
vector alignment, vector computation, vector reduction, and
data store. These characteristics guided the design of the
proposed architecture, SODA-II. While SODA-II retained the
multiprocessor wide SIMD architecture of SODA, it signifi-
cantly improved upon the performance and energy efficiency
of SODA by employing the following schemes, namely, oper-
ation chaining, pipelined execution of SIMD units, staggered

1063-8210/$26.00 © 2009 IEEE

LEE et al.: ALOW-POWER DSP FOR WIRELESS COMMUNICATIONS

1311

TABLE I
MAJOR ALGORITHM KERNELS IN THE BASEBAND PROCESSING WORKLOAD

[Key Kernels || Vector/Scalar | Vector Width | System Type [Function Block

FIR filter vector 6-320 TDMA,CDMA,OFDMA | pulse shaper, channel estimator
Pattern matching vector 16 CDMA synchronization
min/max finding vector 32-10248 TDMA,CDMA,OFDMA | channel decoder
Viterbi-BMC/ACS vector 64-256 TDMA,CDMA,OFDMA | channel decoder, channel estimator
FFT vector 64-2048 OFDMA demodulation
Viterbi-TB scalar - TDMA,CDMA,OFDMA | channel decoder, channel estimator
Interleaving scalar - TDMA,CDMA,OFDMA | interleaver, deinterleaver, channel decoder
Symbol mapping scalar - TDMA,CDMA,OFDMA | modulator, demodulator
Channel encoding scalar - TDMA,CDMA,OFDMA | channel encoder
Sliding window scalar - TDMA,CDMA,OFDMA | frame detection
Code generation scalar - CDMA modulator, demodulator
Interpolation scalar - OFDMA demodulator
Frequency tracking scalar - OFDMA demodulator

memory access, and multicycling in computation units. Oper- TABLE II

ation chaining involves chaining the primitive instructions and
improves the throughput and power performance by reducing
the number of register file accesses. Pipelined execution of
SIMD units supports parallel execution of vector operations and
increases the system throughput. It is efficient for vector algo-
rithm kernels with simple data alignment patterns such as FIR
filter, pattern matching, and min/max finding. For algorithms
that have complex data alignment and require multiple cycles
for computation such as FFT and Viterbi, a combination of
staggered memory access and multicycling of the computation
units results in lower power and higher throughput.

To evaluate the effectiveness of these schemes, we imple-
mented a hardware model of SODA-II. At the component level,
we used Verilog and Synopsys’ Physical Compiler for charac-
terization and used PrimePower to generate power estimates.
The component-level information was used in an architecture
emulation program to generate kernel-level and system-level
power estimates. We compared the performance of the proposed
architecture with the original SODA [7], termed the reference
architecture in this paper. We found that operation chaining
and pipelined execution of SIMD units improved the system
throughput the most, and operation chaining and staggered
memory accesses enhanced the system energy efficiency the
most. As an application example, we showed that for WCDMA
2-Mbps packet service, the proposed architecture requires
two processors (PEs) and consumes an estimated 120 mW
compared to SODA which requires four PEs and consumes an
estimated 210 mW when implemented in 0.13-um technology
and clocked at 300 MHz.

The rest of the paper is organized as follows. Section II
briefly describes the key characteristics of the wireless pro-
tocols. Section III describes the limitations of SODA and
then proposes three architectural schemes to improve its per-
formance. Section IV describes the details of the SODA-II
architecture. Section V provides an analysis of its power and
throughput performance. Section VI includes a brief survey
of existing baseband processor architectures. Section VII con-
cludes with some remarks.

II. WORKLOAD CHARACTERIZATION

There are three main categories of wireless communication
systems. These are based on time division multiple access

DISTRIBUTION OF WORKLOAD FOR THE 2-Mbps WCDMA PACKET
DATA SERVICE. THE VECTOR ALGORITHMS CONSTITUTE
MORE THAN 90% OF THE TOTAL WORKLOAD

Viterbi Min/Max Scalar
LAL T3 BMC/ACS | Finding | workload
[667% | 217% | 003% | 56% |

(TDMA), code division multiple access (CDMA), and orthog-
onal frequency division multiple access (OFDMA). Despite the
differences in their mode of operation, baseband processing
shows many common characteristics: 1) the number of major
algorithm kernels is few; 2) baseband operation is a mixture
of vector and sequential algorithm kernels; 3) vector algorithm
kernels dominate baseband workload; and 4) vector algorithm
kernels can be decomposed into five primitive vector oper-
ations. We elaborate on these characteristics and show how
they are exploited in the development of the proposed DSP
architecture.

Table I shows that the majority of baseband processing
can be modeled as a combination of five vector algorithm
kernels and eight scalar algorithm kernels. The five vector
kernels are FIR filtering, pattern matching, min/max finding,
Viterbi-BMC/ACS, and FFT, and the eight scalar kernels are
Viterbi-TB (trace-back), interleaving, symbol mapping, channel
encoding, sliding window, code generation, interpolation, and
frequency tracking.

An analysis of the wireless protocols shows that the vector
kernels account for more than 90% of the baseband processing
workload of protocols based on TDMA, CDMA, or OFDMA.
Thus, the power efficiency and throughput of a baseband pro-
cessor is determined by how efficiently the vector kernels can
be computed. As an example, Table II shows the distribution
of workload for the 2-Mbps WCDMA packet data service
before parallelizing. To avoid diverging from the main theme
of the paper, the detailed workload characterization for the
2-Mbps WCDMA packet data service has been included in the
Appendix.

Further analysis showed that the vector algorithm kernels
can be decomposed into five vector operations: data load,
vector alignment, computation, vector reduction, and data
store. Table III summarizes the decomposition of the five
vector kernels. Data load involves reading input operands from
memory; vector alignment shuffles or permutes the loaded

1312

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2010

TABLE III
DECOMPOSITION OF MAJOR VECTOR ALGORITHM KERNELS INTO FIVE VECTOR OPERATIONS

[Vector Kernels || Load [Alignment | Computation [Reduction [Store |
FIR Filter scalar vector shift conditional complement, real mult. summation scalar
Pattern Matching single-vector | no shuffle conditional complement, real mult. summation scalar
Min/Max Finding multi-vector | no shuffle compare-and-select finding min or max | scalar
Viterbi-BMC/ACS multi-vector Viterbi trellis | add, sub, compare, conditional comp. - vector
FFT multi-vector | FFT butterfly | add, complement, complex mult. - vector
Conceptual vector pipeline Vector
N) Parallel datapath)
v v reduction | 32x16bit - S
ector ‘ector M SIMD 3
Data load alignment computation Data store ALU] System 3
Vector Bus g
alignment 32x16bit 16x32x16bit | Interface
il SIMD B smp [T 7] simD Unit
. L. . . . Shuffle B Register [Memory
Fig. 1. Pipeline of vector operations in baseband processing—a conceptual Network File E:
diagram. R2wide e
m SIMD
Reduction — [€—
Data alignment: vector shift Vector reduction: addition
K/ Control
Unit
@ Scalar datapath
|:‘:| 16x32bit
XIn-L] clL] Ll Scalar Scalar
K) 4 ALU Register
2) Pl
> >»P File Scalar
v M
X[n-L-1] . emory .
clL-1] : AGU Instruction
N AGU Register Memory
ALU 4
File
> Yin] X AGU datapath
{
! i
: {
4 ' Global
lobal
1 »D Data store: PE-1 PE-2 PE-3 PE-4 PP | |y iomery
XIn11 3 scalar store
n-
cl1] { ! ! i1 !
X[n > System bus
»
c[0] Fig. 3. High-level description of SODA.
N)

Data load: scalar load Vector computation: multiplication

Fig. 2. Decomposition of FIR kernel Y[n] = Y% | X[n — d]c[i] into scalar

load, vector shift, multiplication, summation, and scalar store.

data before or after vector computation; vector computation
performs arithmetic or logical operations in parallel; vector
reduction converts the output of the vector computation into a
scalar result; data store saves the results of a vector computation
or vector reduction to data memory.

The five vector operations can be used to construct a vector
pipeline, the conceptual diagram is shown in Fig. 1. Fig. 2
illustrates the decomposition for the FIR filter example. This
figure shows that the FIR filter can be formed by pipelining data
load (which corresponds to the scalar input X [n] being input),
vector alignment (which corresponds to a vector shift), multi-
plication (which corresponds to vector computation), addition
(which corresponds to vector reduction), and finally data store
(which corresponds to storing the scalar output Y'[n]). This
type of decomposition is also possible for other vector kernels
listed in Table III. Note, that in this pipeline, data dependencies
between vector operations are unidirectional. Since there is
sufficient vector workload to keep the pipeline busy for several

hundred cycles, all of the vector kernels can be mapped onto a
hardware vector pipeline with only occasional reconfiguration.

III. EvoLuTIiON FROM SODA 1O SODA-II

Earlier we had proposed a wide SIMD architecture, SODA
[7], that fully exploited the vector parallelism of baseband
processing. While SODA satisfied the throughput require-
ments of 2G and 3G terminals, and was indeed a low-power
solution (450 mW), it did not have the capability to support
higher throughput applications. In this section, we first describe
SODA (Section III-A), its limitations (Section III-B), and
then introduce three architectural schemes to improve SODA
performance significantly (Section III-C).

A. Previous Work: SODA

The SODA architecture is shown in Fig. 3. It is a chip multi-
processor architecture with four PEs, one general-purpose pro-
cessor (GPP), and a shared global scratchpad memory. Each PE
is sufficiently large and implements an entire kernel algorithm
such as FIR or Viterbi. Such a mapping results in low traffic be-
tween PEs, and a low-speed bus is enough to support inter-PE
communication. The GPP controls the four PEs.

LEE et al.: ALOW-POWER DSP FOR WIRELESS COMMUNICATIONS

TABLE IV
POWER PROFILE OF A SODA PE WHEN IT PERFORMS VITERBI DECODING
WITH K = 7, R = 1/3, AND FFT OF 64 POINTS

| [D-mem. | V-reg. [V-shuffle [V-ALU | control |

Viterbi | 7.45% | 70.66% 1.19% 9.77% 10.91%
FFT 17.68% | 57.62% 4.24% 9.6% 6.3%
TABLE V

OPERATION CYCLE PROFILE OF A SODA PE WHEN IT PERFORMS VITERBI
DECODING WITH K = 7, R = 1/3, AND FFT OF 64 POINTS

| [Toad/store | alignment | computation | control |

Viterbi 37.2% 4.8% 48.0% 9.9%
FFT 24.3% 25.2% 43.7% 6.8%

Each PE in SODA consists of six units: parallel datapath,
scalar datapath, instruction memory, data memory, control unit,
and system bus interface unit. The parallel datapath executes
the vector operations, and the scalar datapath executes the se-
quential operations. The control unit consists of an instruction
decoder, interrupt handler, and program counter. It controls the
scalar datapath and the parallel datapath. The system bus inter-
face unit manages the communication between PEs.

The parallel datapath of a SODA PE consists of an SIMD
ALU, SIMD register file, SIMD shuffle network, and an SIMD
reduction unit. The SIMD ALU has 32 lanes, where each lane
consists of a 16-bit datapath and performs vector computations.
The SIMD register file provides input vector operands to the
SIMD ALU, shuffle network, and reduction unit. It also stores
temporary computation results like a conventional register file.
The SIMD shuffle network performs data alignment that is re-
quired to support data movement operation between computa-
tions. It is implemented by a multiple stage shuffle exchange
network. The SIMD reduction logic converts vector data into a
scalar value. For example, it is used for finding the maximum of
32 numbers or adding 32 numbers.

SODA is based on a RISC style instruction set where each
instruction describes a primitive operation: data load/store
from/to memory, and simple arithmetic operations such as
addition, multiplication and comparison. An instruction can
describe the operation in only one unit—either an SIMD ALU,
or an SIMD shuffle network, or an SIMD reduction unit. While
this reduces the length of the instruction, it results in significant
increase in the number of cycles as well as register power
consumption.

B. Limitations of SODA

The SODA architecture has some limitations. First,
~ 60-70% of the SODA parallel datapath power is con-
sumed by the SIMD register file (denoted by V-reg) as shown
in Table IV. This is because the number of accesses to reg-
ister files is high in the RISC-style of operation adopted by
SODA—ecach instruction loads two input operands from the
register file and stores one operation result on the register file.

Second, even though the vector operations that constitute a
vector kernel can be computed in a pipelined fashion (as shown
in Fig. 1), they are executed as a sequence of RISC instructions
in SODA. As a result, SODA spends a substantial portion of its
operation time on noncomputational operations such data load/

1313
—> mult —>| conditional
> —L —3| 2'scomp.
add/sub > add >
—> mult —>{ conditional _r
—> —3| 2's comp.

(b) conditional 2's complement and add
—FIR filter, pattern matching

(a) multiplication and add/sub
—FIR filter, FFT

'L
|7

(c) selection tree —min/max finding

select add

v

select > select >

vy
Vo4

select add

(d) add and select -Viterbi ACS

—>
sub-abs

1,y
[

(e) sub—abs and add -Viterbi BMC

add >

sub-abs

L

Fig. 4. Operations in major vector kernels which can be chained by concate-
nating arithmetic units.

store and vector alignment. Table V shows that SODA spends
~40-50% of its operation time on noncomputational operations
while executing Viterbi and FFT.

In Section III-C, we describe techniques that have been
adopted in SODA-II to reduce the time spent in noncompu-
tation operations and to reduce the number of register file
accesses.

C. Performance Enhancement Schemes in SODA-II

SODA-II enhances the performance of SODA by im-
plementing operation chaining (Section III-Cl), pipelined
execution of SIMD units (Section IIIC2), staggered memory
access, and multicycling (Section III-C3).

1) Operation Chaining: Operation chaining is a technique
where a set of primitive operations linked by unidirectional de-
pendencies are computed one after the other without writing in-
termediate results to a register file. It is implemented by concate-
nating arithmetic units so that the result of one arithmetic unit
can be directly forwarded to the next one without accessing the
register file. In fact, this technique eliminates about ~40-50%
of register file accesses and helps reduce the high register file
power consumption problem of SODA. Operation chaining is
applicable to many of the major kernels listed in Table III. The
five frequent computation patterns which can be chained are
shown in Fig. 4. These can be mapped onto hardware that con-
sists of two parallel arithmetic units (first stage) which feed
into a third arithmetic unit (second stage). This is the basic
structure of the SIMD computation unit (CU) that is described
in Section IV-B and illustrated in Fig. 8. The concatenation
of arithmetic units results in a reduced cycle count and higher
throughput. All vector kernels benefit by operation chaining;
the amount of performance improvement varies according to the
characteristics of the vector kernel.

Table VI lists the instructions that are used for implementing
the five vector kernels. Note that 9 out of the 11 instructions
are chained instructions. For instance, instruction “DBMCA”
is obtained by chaining two subtract/absolute value operations

1314

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2010

TABLE VI
CHAINED AND PRIMITIVE INSTRUCTIONS USED FOR IMPLEMENTING THE VECTOR KERNELS

| Chained Instructions |

Instruction

Description

DCCAD RD,R1,R2,R3 R4

Double conditional complements and addition : 77 = R1 ? R2:-R2; 75 = R3 ? R4:-R4; RD = T1+15

DMLAD RD,R1,R2,R3,R4

Double multiplications and addition: 77 = R1x R2; T> = R3x R4; RD = T1+1>

DMLSB RD,R1,R2,R3,R4

Double multiplications and subtraction : 77 = R1xR2; 1o = R3x R4; RD = T1-13

TMIN RD,R1,R2,R3 R4

Triple min. value search: 77 = (R2>R1) ? R1:R2; 75 = (R4>R3) ? R3:R4; RD = (12>11) ? 1T1:1%

TMAN RD,R1,R2,R3,R4

Triple max. value search: 71 = (RI>R2) ? R1:R2; 75 = (R3>R4) ? R3:R4; RD = (71>T3) ? 1115

DBMCA RD,R1,R2,R3,R4

Double branch metric computations and addition: 77 = abs(R1-R2); 75 = abs(R3-R4); RD = T1+7%

BMCA RD,R1,R2,R3

Branch metric computation and addition: 7 = abs(R1-R2); RD = 71+R3

BMC RD,R1,R2

Branch metric computation, RD = abs(R1-R2)

ACS RD,R1,R2,R3,R4

Add, compare, and select: 71=R1+R2; T5=R3+R4; RD=(11>T5) ? T1:13

| Primitive Instructions

Instruction Description
ADD RD,R1,R2 Addition, RD = R1+R2
SUB RD,R1,R2 Subtraction, RD = R1-R2

Fig. 5. Mapping of conceptual vector pipeline onto a pipeline of SIMD execu-
tion units.

followed by an addition corresponding to the structure shown in
Fig. 4(e).

2) Pipelined Execution of SIMD Units: In baseband pro-
cessing, noncomputational operations such as data load/store
and vector alignment occupy a substantial portion of the total
cycle count (see Table V). So significant gain can be achieved
if the vector operations can be executed in a pipelined fashion
resulting in reduced number of load/store and alignment
operations.

Fig. 5 shows the mapping of the vector operations onto a
pipeline of SIMD execution units. The data dependencies be-
tween the vector operations are unidirectional, and so there is
no complex data forwarding between the corresponding hard-
ware units. The net result is a significant reduction in the number
of data load/store instructions. For this scheme to be effective,
the pipeline has to be highly utilized. Our workload analysis
shows that the vector kernel algorithms keep the pipeline busy
for long periods of time, resulting in significant performance
enhancement.

The pipelined execution scheme is certainly an efficient way
of implementing vector kernels with simple data alignment pat-
terns such as FIR filtering, min/max finding, etc. However, its
application to vector kernels with complex data alignment and

Conceptual vector pipeline Vector L— 4 read/writes in parallel
_I" reduction RD Computation unit — 1 WR
Vector Vector ' RD Computation unit - 2 WR
Data load 1= 4jignment [] computation ' Data store RD Computation unit - 3 WR
1 . ' _L: Vector 1 RD Computation unit — 4 WR
E " ' \alignment E >t
- n I —- - (a) SIMD mode of execution
0 A AL A | H v . . .
SIMD pipeline [~ "] . - 1 read at a time 1 write at a time
: 224 z 220 '
' EE] © EEE : [RD] Y _Computation unit - 1 [WR
: > S 1= : RO \ Computation unit - 2 WR
: g s RD [\ Computation unit - 3 WR
] 8 < g 3 - RD | Computation unit - 4 WR]
] =. @ o c2Q]
' > 22 E] 3.6 Z ' > t
d €9 c ai=3v] U >
6 @ 3 S % (b) Staggered mode of execution
RO port | [WRport Fig. 6. Execution of computation units using (a) SIMD mode and (b) staggered
Banked memory mode.

multicycle computations (such as Viterbi and FFT) results in
function unit underutilization and the use of power-hungry data
alignment networks. In Section III-C3, we describe how to al-
leviate these problems by using a combination of staggered ex-
ecution of computation units and multicycling.

3) Staggered Memory Access and Multicycling in Computa-
tion Units: As mentioned earlier, data alignment is fairly simple
for FIR filtering, pattern matching, and min/max finding. For in-
stance, for FIR filtering, one scalar element can be read from the
data memory and shifted into the vector registers. As a result, a
vector load from data memory can be avoided. For kernels with
complex data alignment such as Viterbi and FFT, vector load can
be avoided by distributing data in multiple memory banks. How-
ever the data have to be aligned using NV x N switches before
the data can be fed to the computation units. In an architecture
that supports operation chaining, four sets of N x N switches
would be required, resulting in a fairly large area overhead.

Now, if the operations in the SIMD computation unit could be
staggered, as in time division multiplexing, then each N x N
switch could be replaced with a single V x 1 switch. The data
alignment problem could now be handled by the memory ad-
dress generators. Fig. 6 illustrates the SIMD mode and staggered
mode of operation in a datapath with four computation units. For
more details, please refer to [18].

One potential problem with such a design is that in many
cases, the computation unit is underutilized. If the architecture

LEE et al.: ALOW-POWER DSP FOR WIRELESS COMMUNICATIONS

Parallel datapath

(%)
I Vector Controller i._%] System bus G
Interface g
— unit g
| cu-1 | &
j— —
3
< | cu-2 | Q)
S > g Instruction
8 2 Memory
L Q
~ s Scalar datapath T
g [
=]
e ALU PC
’7 CU-16 _1 MULT L—B] Interrupt
Switch-read | AGUs sl AGUs | Switch-write L4 REG Instruction
Lt file | decoder
x
| | | l l ll l l Control unit
Bank Bank Data mem Bank || |
1 2 ata memory 16
PE-1 PE-2 PE-3 PE-4 GPP Global
Memory
System bus

Fig. 7. Architecture of the proposed SODA-II processor.

has 16 computation units, then the computation unit has to have
a delay of 16 cycles to be 100% utilized. To keep the compu-
tation unit busy for 16 cycles most of the time, it has to be as-
signed a more complex workload. This is exactly what is done
in SODA II. The computation unit now behaves like a small mi-
croengine. It reads in multiple data and operates on them over
multiple cycles—the process is referred to as multicycling. As
a consequence, the number of read and write switches must be
increased. For instance, for Viterbi and FFT, seven inputs have
to be fed to the computation unit to keep it utilized all the time,
and the number of read switches increases from four to seven.
However all these switches are much simpler than the N x N
switches. For instance, the seven N X 1 switches consume 1/12
of the area and 1/2 of the power compared to the four N x NV
switches.

IV. PROPOSED ARCHITECTURE: SODA-II

A. High-Level Architecture of SODA-II

Fig. 7 shows the proposed architecture, SODA-II. Like SODA
[7], it consists of four PEs, one GPP, and one global memory.
Each PE consists of a parallel datapath, a scalar datapath, data
memory, instruction memory, control unit, and system bus inter-
face unit. While at the high-level, SODA-II is similar to SODA,
it differs from SODA in the way the kernel operations are im-
plemented in the parallel datapath. Specifically, it incorporates
operation chaining and pipelined execution of SIMD units to
enhance the performance of all kernels. In addition, it imple-
ments staggered execution and multicycling to enhance the per-
formance of Viterbi- and FFT-type operations.

B. Detailed Architecture of Parallel Datapath Components

The parallel datapath of a PE consists of computation units,
address generators and switches for data read and data write,

1315

write back
e
. >
(]
2< .
o = | ™, forwardin 5
N orwarding 5
g =
i< u
™ To
o] ALUMOLT 1= : o™ Reduction
From 1) L c Logic
o
VREG-A/B : é : g ALU g
S >
I : - LY SH—> To
= N 1 ® > Data Mem
< N —
From 3 c3 bl b ALU/MULT ::
Data Mem. — 5 @ S [T i
—1> || 5 : L ;
7 el | o |
A | | | 01 1
R Wy () | i I
’ j Next
P(r;eJ 1 Control signal latch NN ou

Fig. 8. Architecture of the computation unit.

vector registers, reduction logic, and vector controller (see
Fig. 7). The scalar datapath is similar to the SODA scalar
datapath and is not described here.

1) Computation Units: The computation unit is like a small
microengine that is capable of supporting single-cycle opera-
tions such as FIR and multicycle operations such as Viterbi and
FFT. The CU supports operation chaining. There are 16 CUs;
the number 16 was chosen after conducting a detailed analysis
of hardware cost, including the cost of the switches, energy, and
throughput of all the kernels [18]. We found that in 0.13-pm
technology, the architecture sweet spot was 16 when optimized
for throughput/watts.

The detailed architecture of the computation unit is shown
in Fig. 8. It consists of three arithmetic units, an input buffer,
an output buffer, register file, multiplexer, and latch. The arith-
metic units are connected in a way to support the computation
patterns of the vector kernels depicted in Fig. 4. For additional
pipelining, the outputs of the first stage are latched. The outputs
can be written into the register file. To support efficient multi-
cycling, the outputs can also be forwarded to the ALUs via the
data-forwarding paths.

The multiplexer reads input operands from three different
sources: the input buffer, vector registers, and register file. In
the SIMD mode (which is employed for the FIR-type of opera-
tions), the input operands come from the vector registers. In the
staggered mode (which is employed for the FFT- or Viterbi-type
of operations), the intermediate outputs are cycled back for fur-
ther computation. The inputs to the multiplexer then come from
the input buffer and register file. Furthermore, in the staggered
mode, the control signals of one CU are sent to the next one in
the following cycle, thereby reducing the controller complexity.

2) Vector Reduction Unit: The vector reduction unit converts
the vector data generated by the computation units to scalar data.
There are only two kinds of reduction operations, summation
and minimum/maximum value searching. Summation can be
represented by y = Zf\z)l x;, where the input vector X =
(wo,...,m(n—_1)) and the scalar output is y. Minimum/max-
imum value searching can be represented by y = minf\;}l ;.
Both min(+) and max(+) functions are based on subtraction and
selection. Thus, the summation and minimum/maximum value

1316 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2010
CU-1 Cu-2 CuU-16 VREG
i ; 1) o
= = = — 20 < o O
Blocking Blocking Blocking Blocking a S (@) a =4
logic logic logic logic S o 8 3 :
Destination T % T i %) T —’g IS 5 3 = g 5
selection[4:0] \ 2a -2 - S 23
55 5 36 | 5§98
CLK latch =Q S -39 =a
3]
Source A r A
selection[3:0] >| m x 16x1 MUX » x | 1
| | |
banki bank2 bank15 banki6 Crc;gtsrol Micro instruction memory Crzrg]terl Crzgtsrd
(a) read switch -
CU-1 Cu-2 CU-16 Reduction
| | | Control
Source x x x x Instruction reg.
selection[4:0] ’| 17x1 MUX |
CLK latch I |
o i address/data buses for data memory
Destination o
selection[3:0] & i &L i & i 4 i
Blocking Blocking Blocking Blocking Fig. 10. Control scheme of the parallel datapath.
logic logic logic logic
T T T T
v v
bank1 bank2 bank15 bank16

(b) write switch

Fig. 9. Block diagram of (a) read switch and (b) write switch.

searching operations can easily be mapped onto the same hard-
ware with only minor modifications. The reduction logic is or-
ganized as a log, N depth tree.

3) Switches for Data Read/Write: The role of the switches
is to route data between data memory banks and the computa-
tion units. In the proposed architecture, we have 11 switches,
seven for read and four for write. The large number was neces-
sary to support multicycling for Viterbi- and FFT-type of oper-
ations. As shown in Fig. 9(a), each switch for data read consists
of a 16 x 1 multiplexer, a latch, and 17 blocking logic units. The
16 x 1 multiplexer is used to select one data from 16 memory
subbanks. The output of the multiplexer is routed through a latch
to blocking logic units placed in front of the 16 CUs and one
vector register. The blocking logic helps in reducing glitch prop-
agation; the latch allows read and write pipelining. The switch
for a data write is similar to the switch for a data read and shown
in Fig. 9(b). It consists of 17 x 1 multiplexer (16 input ports for
CUs and one input port for vector reduction), a latch, and 16
blocking logic units. In order to provide multiple data to the CU,
several switches are active at a time.

4) Address Generators: Address generators (AGU) are used
to automatically generate the next address of the data memory
(see Fig. 7). One address generator is designated per read/write
switch, and so there are 11 address generators in the parallel
datapath. Because of the deterministic address generation pat-
terns of the vector kernels, hardware required for automatic
address generation is simple. There are two address genera-
tion modes, linear and paged. In the linear mode, the next data
memory address is given by a linear equation, y[n] = a+ (- n,
where « is an initial address and /3 is the difference between two
adjacent data points. The linear operation mode is used for FIR
filter and Viterbi-BMC/ACS.

The address generation pattern in the paged mode can be rep-
resented by the following equation:

_ [n_1]+()é,
ylnl = {Z[n-w,

if (nmod M) # M —1
otherwise M
where M is the number of data elements in a page, « is the
displacement within a page, and (is the displacement when
entering a new page. The paged mode is used for data write in
the Viterbi-BMC/ACS and FFT kernels.

5) SIMD Control Logic: To support pipelined execution
through the SIMD units, an efficient controller has to be de-
signed. We make use of control registers, which are mapped
onto data memory space, for controlling the data load/store,
vector alignment, and vector reduction units. Fig. 10 depicts the
overall control scheme. The control of each of the individual 16
CUs uses the same control registers. In staggered mode each
CU views a shifted version of the same control registers. We
refer to this as streaming control.

Control of the computation units is more involved since these
units support multicycling. A complex instruction set computer
(CISC)-style control scheme is utilized here. Five CISC instruc-
tions are defined in order to describe the operation of the vector
kernels. The instructions shown in Table VI are used for building
the microcode of these CISC instructions.

V. POWER AND THROUGHPUT ANALYSIS

A. Experimental Environment and Methodology

The dynamic power and throughput of the proposed architec-
ture is estimated at the component, kernel, and system levels.
For component-level estimation, a hardware model is built in
Verilog and synthesized using Synopsys’ Physical compiler.
TSMC-13 standard cell library based on 0.13-pm technology
is used. To reduce dynamic power, a low voltage (1 V) and low
dielectric constant library are used. Wire capacitance for inter-
connection-dominated modules such as switches is considered
by generating the layout using Cadence’s Silicon ensemble.

LEE et al.: ALOW-POWER DSP FOR WIRELESS COMMUNICATIONS

TABLE VII
COMPONENT-LEVEL BREAKDOWN OF THE POWER CONSUMPTION AND AREA
OF SODA-II. THE AVERAGE POWER IS FOR THE WCDMA 2-MbpsPACKET
DATA SERVICE WHEN ONLY TWO PES ARE ACTIVE. THE LEAKAGE POWER
AND AREA CORRESPOND TO THE FOUR-PROCESSOR ARCHITECTURE

Average | Leakage | Area
power power (mm?)
(mW) (mW)
Data mem. 13.8 1.41 3.7
Memory R/W switch 17.4 0.18 0.1
Addr. gen. 74 0.10 0.1
REGs 70 025 0.4
MULTs 5.5 0.42 0.5
Vector CU 3105 86 043 04
MUX 2.2 0.10 0.0
[Vector registers [04] 005 [00 |
[Vector reduction [04 T 004 | 02 |
[Vector control [66 [001 [02 |
REG 24 0.06 0.1
MULT 2.4 0.04 0.1
SCALAR ALU 1.8 0.00 0.1
Control 1.1 0.01 0.1
I-MEM 12.0 0.70 1.8
[BUS IF [04 [010 | 01 |
[Miscellaneous [343] - | 24]
[Total(rounded) [120] 4 [11]

Additionally, Artisan’s memory compiler is used for the gener-
ation of storage components. The memory compiler provides
HDL models which are used for generating the timing and
power information. The gate-level dynamic power is evaluated
using Synopsys’ PrimePower. Overall, the component-level
power estimates are fairly accurate.

The kernel-level power estimates are obtained by using the
component-level models in an architecture emulation program
that was developed in house. The emulation program calculates
the activity level of each component during the execution of
the assembly program. This is used to estimate the cycle count
and power consumption of each kernel. In order to consider the
effect of global clocking and interconnection, we assume 30%
power and area overhead. Finally, the system-level throughput
and power estimate is calculated by aggregating kernel-level es-
timation. We expect our estimates to be within 20% of those ob-
tained by fully synthesized designs.

All comparisons are with respect to the reference architec-
ture, SODA. Since SODA was implemented in 0.18-pm tech-
nology, operated at 1.8 V, and was clocked at 400 MHz, it was
resynthesized using the same parameters as the proposed ar-
chitecture, namely, 0.13-um technology, 1 V, low-K material,
and 300-MHz operation frequency. The operation frequency of
300 MHz was chosen by evaluating the energy/cycle versus op-
eration frequency (in the range 100-800 MHz) for WCDMA
2 Mbps and then choosing the frequency with the lowest en-
ergy/cycle.

B. Component-Level Analysis of SODA-II

1) Power: Table VII shows the component-level power
breakdown of SODA-II. The average power is the power
consumed while executing WCDMA 2-Mbps packet data
service by only two PEs; the other two PEs are inactive.
From Table VII, we see that the data memory and instruction

1317

12 T T T T T

[l SODA-II
[0 sopA

Area (mm)"2
(=)}

[S]

Mem-Unit Vector-Unit Scalar—Unit Bus-IF Total

Fig. 11. Area comparison between SODA and SODA-II.

TABLE VIII
COMPARISON OF THE THROUGHPUT AND ENERGY CONSUMPTION OF SODA-IT
WiTH SODA WHEN THEY PERFORM MAJOR VECTOR KERNELS FOR BASEBAND
PROCESSING. THE NUMBER OF PES IN BOTH ARCHITECTURES IS 4

Energy (pJoul/Output)

Vector Kernels SODA-II | SODA | Ratio
FIR filter 530 745 71%
Pattern matching 200 430 47%
Min/Max finding 600 900 67%
Viterbi-BMC/ACS 38530 52780 | 73%
FFT 1090 1380 79%

Throughput (Output/Sec)

SODA-II | SODA | Ratio
FIR filter 2.7E8 0.7E8 | 400%
Pattern matching 2.7E8 0.7E8 | 395%
Min/Max finding 6.8E8 S5.4E8 | 125%
Viterbi-BMC/ACS 2.1E6 1.1IE6 | 195%
FFT 1.1E8 4.2E7 | 255%

memory are the most power consuming blocks in a PE. Thus,
use of low-power memory will be essential for further power
reduction. The power consumption of the registers inside each
CU is 7.0 mW, which is only 80% of the ALU power. This
is significantly small compared to SODA where the register
file consumed about ~6-7 times more power than the ALU.
Finally, the 30% power overhead due to global clocking and
interconnection is presented under ‘“Miscellaneous.”

2) Area: The four-PE SODA-II architecture occupies
11 mm?. The data and instruction memories are dominant,
occupying about 50% of the total area. The area of the parallel
SIMD datapath is about 20%. Thus, a wide datapath does not
contribute much to the total area. The impact of the scalar
datapath on the total area is negligible.

Fig. 11 compares the area of the two competing four-PE
architectures. We see that the memory and vector units of
SODA-II are slightly larger than SODA. Overall, the area of
SODA-II is about 10% larger than that of SODA.

C. Kernel-Level Analysis

We compare the throughput and energy consumption of
SODA-II and SODA while processing five key vector kernels
in Table VIII. We use typical operation scenarios. For instance,
for FIR filter, we assume 32 taps, down sampling rate of 2,
16-bit filter coefficients, and 16-bit input data, which is the
configuration of the WCDMA pulse shaping filter.

1318

TABLE IX
POWER COMPARISON BETWEEN THE REFERENCE ARCHITECTURE
(4 PES) AND THE PROPOSED ARCHITECTURE (2 PES)
FOR WCDMA 2-Mbps PACKET DATA SERVICE

Power Reference | Proposed)
consumption [mW] (SODA) (SODA-II)
Memory 28.5 40.6
Vector computation 124.1 31.1
Scalar 19.7 19.7
Vector control 35.44 6.7
Bus I/F 0.4 0.4

[Total i 210 \ 120 \

Table VIII shows that SODA-II consumes about ~20-50%
less energy than SODA. Most of the energy savings come
from the following factors. The first is the use of operation
chaining, which minimizes the number of power-consuming
register file accesses. The second is the low control overhead
because there is no additional decoding after the initial config-
uration—streaming control is used to coordinate the pipelined
execution in each SIMD lane and across lanes. The third is
the simplified data alignment where the NV x N switches are
replaced with IV x 1 switches during staggered mode operation.

Table VIII also shows that SODA-II processes about ~1.3—4
times more input data than SODA. This is primarily because of
operation chaining and pipelined execution of SIMD units. The
performance of the min/max finding kernel is not as impressive.
Here the data load takes comparatively more time and does not
utilize pipelined execution through the SIMD units effectively.

D. System-Level Analysis: WCDMA 2-Mbps Workload

For processing WCDMAZ2-Mbps packet data workload,
SODA utilizes all four PEs and consumes 210 mW while
SODA-II utilizes only two PEs and consumes 120 mW. In
comparison, the SB3010 processor from Sandbridge, which is
implemented in 90 nm, consumes 600 mW, which is signifi-
cantly higher compared to both SODA and SODA-II.

Table IX compares the power performance of SODA and
SODA-II. The column “memory” represents the power dissi-
pated for data load/store from/to memory. The column “vector
computation” represents the power for vector computations that
includes the power consumption of arithmetic units and register
files. The column “scalar” represents the power consumption for
the scalar workload. The column “vector control” represents the
power dissipated for vector control signal generation. The two
architectures show identical power consumption for system bus
interface and scalar workloads.

From Table IX, we see that SODA-II dissipates less power
for the vector computations and the vector control signal gener-
ation. The reduction in the vector computation power is because
of operation chaining. The reduction in the control signal gen-
eration power is because control instructions are not decoded in
every cycle and the control signals flow in a streaming fashion.
While accessing memory, the proposed architecture dissipates
more energy than SODA. This is because the data load/store op-
erations are performed through switches which are power con-
suming. However, the power gains of the vector computation
and vector control generation operations more than compensate
for this overhead.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2010

6M T T T T T

SM [= vemsmsossmnns st s

AM oo

BM [-cene e

MM

Maximum throughput [bps]

oM

Acref Bireftchain Cireftpipe D:reftchain E:reftchain
+pipe +E1pe+_stag er
System configurations multicycle

(a) Throughput

12E-8 T T T T T

10E-8 [~~~ [REREEERLETLREE

8E-8 [

6E-8 [

4E-8 [~

Energy cost [Joule/Bit]

2E-8 [

0E-8

Acref Bireftchain Ciref+pipe D:reftchain E:ref+chain

+pipe +£1pe+_stag er
System configurations multicycle

(b) Energy cost

Fig. 12. Impact of three schemes on system throughput (bits per second) and
energy cost (Joules per bit).

E. Impact of Three Schemes

In order to analyze the impact of the three schemes, we
studied five system configurations with respect to both max-
imum throughput and energy cost, represented by energy con-
sumption per bit: A) reference architecture SODA, B) SODA
with operation chaining; C) SODA with pipelined execution
of SIMD units referred to as SIMD pipelining; D) SODA with
operation chaining and SIMD pipelining; and E) SODA with
operation chaining, SIMD pipelining, staggered execution and
multicycling (SODA-II). For evaluation, we build kernel-level
and system-level models corresponding to all configurations.
Fig. 12 illustrates the impact of each of these schemes.

We see that operation chaining (configuration B) improves
system throughput by about 70% and reduces energy cost by
about 20% by decreasing the number of data load/store instruc-
tions and thus the number of register file accesses. Pipelined
execution of SIMD units (configuration C) increases the system
throughput by about 140% because multiple vector operations
can now be processed at the same time. Vector kernels with
simple data alignment patterns such as FIR filter, pattern
matching, min-max can be processed very efficiently because
of this enhancement. The energy cost, however, increases by
about 15% due to more complex control that is required to
manage the pipelined flow during the execution of kernels such
as FFT and Viterbi that require multiple cycles.

LEE et al.: ALOW-POWER DSP FOR WIRELESS COMMUNICATIONS

1319

TABLE X
COMPARISON OF ARCHITECTURAL FEATURES OF BASEBAND PROCESSORS

Infineon ADI Icera | NXP | Sandbridge | Linkopin;
SODA-II | SODA | U icr®" | TigerSHARC | DXP | EVP | Sandblaster | SIMT

DSP cores 4 4 4 8 N/A 1 4 1

PE freq. (MHz) 300 400 300 250 1000 | 300 600 300
SIMD lanes 32 32 4 2x4 4 16 2x4 4

VLIW on SIMD no no yes yes yes yes yes no
Scalar datapath yes yes no no no yes yes yes
Coprocessor no no yes no no yes no yes
Scratch pad mem. yes yes yes yes yes yes yes no
Shared global mem. yes yes yes no N/A no no yes

Fig. 12 also shows how a combination of these schemes can
enhance system throughput and energy performance. By de-
ploying a combination of operation chaining and pipelined exe-
cution of SIMD units (configuration D), the system throughput
increases by 170% which is about 10% higher than that of con-
figuration C (SIMD pipelining alone). The energy cost of con-
figuration D drops by about 35% compared to configuration C
because of fewer register file accesses due to operation chaining.
When staggered memory access and multicycling are added to
configuration D, the energy cost is further reduced by 30% (con-
figuration E). This is due to use of N x 1 switches (instead of
N x N switches), fewer register file accesses and streaming-
style control scheme. Note that the throughput of configuration
E is 10% lower than that of configuration D. This is because the
computation units could not be completely utilized during pro-
cessing of all the kernels.

While throughput is certainly an important performance
metric, energy consumption per bit is a more relevant measure
for baseband processing, provided performance goals are met.
Under this constraint, configuration E, which corresponds to
SODA-II, is the best design choice for baseband processing.

VI. WIRELESS BASEBAND PROCESSOR SURVEY

In recent years, a large number of architectures have been
proposed for baseband processing. Most of these architectures
are SIMD-based and consist of one or few high-performance
DSP processors. The DSP processors are connected through a
shared bus and managed through a general-purpose control pro-
cessor. Many of them have a shared global memory connected
to the bus. Table X compares the different SIMD-based archi-
tectures with respect to SIMD width, VLIW support, frequency,
and memory organization.

The DSP processors differ in the width of the SIMD datapath.
While SODA and EVP [4] support a wide SIMD datapath (16
and 32 lanes respectively), TigerSHARC [2], DXP [3], Sand-
blaster [5], and SIMT [6] have narrow SIMD datapaths (four
lanes). In general, wider SIMD datapaths have higher power
efficiency but require higher levels of data-level parallelism to
be effective. Since the majority of baseband computations are
on wide vector arithmetics, a wide SIMD can be utilized fairly
well. In addition, most of the SIMD-based DSP processors
support VLIW execution by allowing concurrent memory
and SIMD arithmetic operations. TigerSHARC and SIMT
go one step further and provide concurrent SIMD arithmetic
operations by having two four-lane SIMD ALU units that are
controlled with different instructions. Sandblaster also supports

multhreading in order to avoid overheads caused by use of long
instruction words in VLIW.

All the SIMD-based DSP processors use software-managed
scratchpad data memories instead of caches. This is because
data are accessed in a regular pattern in baseband processing
and use of scratch pad memories helps reduce power. Most of
the processors operate at relatively low frequencies. The excep-
tion is ICERA DXP [3] which implements a deeply pipelined
high-frequency design. Its SIMD ALUs are chained so that a
sequence of vector operations can be performed before the data
are written back to the register file. Finally, some of these ar-
chitectures have hardware accelerators for error correction al-
gorithms such as Viterbi and Turbo coding.

Apart from the SIMD-based architectures, there are a few re-
configurable architectures such as the fine-grained architectures
PicoArray [8] and XiRisc [9], and the coarse-grained archi-
tectures including Intel RCA [10], QuickSilver [11], Montium
[12], and ADRES [13]. These architectures have different types
of PEs, ranging from simplescalar processors to application-
specific processors which typically serve as hardware acceler-
ators for error correction. These heterogeneous systems provide
a trade-off between system flexibility and computational effi-
ciency of the individual kernels.

VII. CONCLUSION

This paper presents a low-power, high-performance pro-
grammable DSP architecture that is optimized for baseband
processing of wireless terminals. It builds on our previously pro-
posed architecture SODA which supported WCDMA 2 Mbps
and IEEE 802.11a efficiently. The power and throughput per-
formance of the proposed architecture, SODA-II is significantly
better than SODA. This is because of: 1) chaining operations in
the computation units, which reduces the number of load/store
instructions; 2) pipelined execution of vector operations in the
SIMD pipeline which allows for multiple vector operations
to be processed in parallel; and 3) staggered access of shared
memory and multicycling in the computation units, which
reduces the overhead of data alignment.

The performance of the proposed architecture is evaluated
with an in-house emulator which uses accurate component-level
models that were developed using Synopsys and Artisan tools.
For WCDMAZ2-Mbps packet data service, SODA-II uses only
two PEs and is estimated to consume 120 mW when operating at
300 MHz compared to SODA which uses all four PEs and is esti-
mated to consume 210 mW. SODA-II has the capability of sup-
porting higher throughput applications; it can support 9-Mbps

1320 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2010

Active state
scrambler :3‘84M spreader 20K Interleaver :24OK Turbo < J1cK
(1bit) (1bit) (1bit) | Encoder [~ (1pit)
3.B4Mx4
(Jebit) NN
Control hold state
DA scrambler 3.84M spreader 15K Interleaver 15K Viterbi |, 41K
(o | 5P NEER) ‘(7o) | Encoder [“TIHD
| 3.84Mx4
" ({4bit) w\
3.84M | 15K
4 scrambler D) spreader)
(16bit)
Gain control 1.5K
(1bit) (16bit)
3.84M
Idle state Scrambling Scrambling Power
Code Gen. Code Gen. Control
(1bit) || (1bit) ’
3.84M/8] [3.84M
Searcher
=
1.5K 15K 1.5K
L oLl]|eem (8bit) (128bit)]
3. Z\AXZJW 3.84Mx2 | 3
(BHit) "L———— (8bip)i 7 3.84M 15K
descrambler ——> despreader -
A/D | 3. A2 M e 1.3:84M2 | (8bit) (8bit) 15K
(Bijt) "L———=—" (8bif)i | (1dit)
combiner 19K . 15K Viterbi 34K o
@H0’| Denterleaver Iepa?l becoder [(B0
B 3.84M ‘
. 4 ISESN
R descrambler o) despreader G)
H
vl
N 84 960
descrambler Szébit,\)/l despreader (8bii<)‘
-3 960K
(8bit)"
combiner [960K | pei 2.88M | Turbo 2N
Bo7| Dentereaver Fepin®| pecoder [(00
R 3.84M 960K S
: > (8bit)”
d descrambler C3) despreader @

Fig. 13. Detailed block diagram of the WCDMA physical layer when it provides2-Mbps packet data service.

(WCDMA) throughput at 730 mW when operating four PEs at
700 MHz.

APPENDIX
CHARACTERIZATION OF WCDMA PHYSICAL LAYER

Fig. 13 shows a detailed block diagram of the WCDMA
physical layer. It supports three modes of operation: idle mode,
control hold mode, and active mode. In the idle mode, only a
part of the reception path is active, specifically the low-pass
filter (LPF)-Rx, demodulator (descrambler, despreader, and
combiner), and multipath searcher. In the control hold mode,
a bidirectional 3.4-Kbps signaling link is established with the
base stations and both the transmission and receiver paths
are switched on. The convolutional encoder/Viterbi decoder,
LPF-Rx/Tx, modulator/demodulator, multipath searcher, and

power control are all activated. In the active mode, a terminal
additionally establishes a bidirectional high-speed data link
where the error control is done by Turbo codes. Turbo decoding
is computationally very intensive and significantly increases
the terminal’s workload. Here we assume that Turbo decoding
has been implemented by the soft output Viterbi algorithm
(SOVA).

Fig. 13 also describes the interface between the kernel al-
gorithms. The number at the top of each arrow represents the
number of samples per second, and the number at the bottom
represents its bit width. We see that the size of most input/output
data in the transmission path is 1 bit, but, in the reception path,
the size of input/output data is 8 or 16 bit because of the pre-
cision requirements for channel decoding. The data rate under-
goes significant jumps at the spreader and despreader. For in-

LEE ef al.: A LOW-POWER DSP FOR WIRELESS COMMUNICATIONS 1321
TABLE XI
PEAK WORKLOAD PROFILE OF THE WCDMA PHYSICAL LAYER FOR THE THREE OPERATION MODES
Active Control Hold Idle
(MOPS) [% (MOPS) [% || (MOPS) | %

Searcher 26,538.0 42.1 26,358.0 58.4 3,317.3 37.7

Interleaver 2.2 0.0 2.2 0.0 - -

Deinterleaver 0.2 0.0 0.2 0.0 - -

Conv. encoder 0.0 0.0 0.0 0.0 - -

Viterbi Decoder 200.0 0.3 200.0 0.4 - -

Turbo encoder 0.0 0.0 0.0 0.0 - -

Turbo decoder 17,500.0 27.8 0.0 0.0 - -

Scrambler 245.3 0.4 245.3 0.5 - -

Descrambler 2,621.4 4.2 2,621.4 5.8 889.2 10.1

Spreader 297.5 0.5 297.5 0.7 - 0.0

Despreader 3,642.5 5.8 3,642.5 8.0 607.1 6.9

LPF-Rx 3,993.6 6.3 3,993.6 8.8 3,993.6 45.3

LPF-Tx 7,897.2 12.6 7,897.2 17.4 - -

Power control 0.0 0.0 0.0 0.0 - -

[Total [629370 | - | 452729 | - | 88072 | - |
stance, in the transmission path, the data rate is upconverted TABLE XII
from kilosampl r nd into m mpl " nd after PARALLELISM AVAILABLE IN THE ALGORITHMS
0 osamples per seco d into megasamples per second afte O THE WCDMA PHYSICAL LAYER

the spreading operation.

The detailed peak workload profile of the WCDMA physical Scalar | Vector | Vector | Data | Max
layer is shown in Table XI. This was generated by compiling the Load | TLoad | Width | Width | Task
W-CDMA benchmark (written in C) with an Alpha gcc com- () () ibib)
piler, and executing it on the M5 architecture simulator [19]. The Isriiﬁ:;:er : 0(3) 93 329 1’% L 2(3
instruction count required to finish each algorithm was taken and Deinterleaver 100 0 - N _
the peak workload of each algorithm calculated by dividing the Viterbi encoder 60 40 8 L1 I
instruction count by the tightest processing time requirement of .| BMC 1 99 256 8,8 45

he al ith Viterbi | ACS 1 99 256 8,8 45
the algori m. . . TB 100 0 - - -

The first thing to note in Table XI is that the total workload Turbo encoder 60 40 4 I,1 2
varies significantly with the operation mode. For instance, the BMC 1 99 16 8,8 20
total workload in the idle mode is only 14% of that in the active Turbo %(3?8 i 0(1) 9(9) 16_ 8’% 2(3
mode. Second, kernel algorithms and the workload assigned to Scrambler I 99 7560 T1 i
them also vary according to the operation mode. For instance, Descrambler 1 99 | 2560 1,8 1
the multipath searcher has the same workload in the active and Spreader 100 0 - - -

.. . . Despreader 100 0 - - -
control hold modes but s1gn1ﬁcgntly lower V\{orkload in 'the idle Combiner 100 0 - - -
mode. In general, the workload in the transmission path is much LPE-Tx 1 99 32 1,16 6
less than that in the receiver path. LPF-Tx 1 99 32 8,8 2

Next we present the parallelism in each of the W-CDMA al- Power control 100 0 - - -

gorithms in Table XII. The second and third columns in the table
present the ratio between the run time of the scalar code and
the vector code. The fourth column represents the maximum
possible data-level parallelism, DLP, defined as the maximum
SIMD vector width. The fifth column provides the bit width of
the two vector operands in the fifth column. The last column
shows the thread-level parallelism, TLP.

From Table XII, we can see that the searcher, LPF, scrambler,
descrambler, and the BMC/ACS of the Viterbi decoder exhibit
considerable DLP and TLP. The DLP of the scrambler and de-
scrambler can be converted into TLP by subdividing large vec-
tors into smaller ones. The Turbo decoder contains limited DLP
because the allowed maximum vector length of the ACS opera-
tion of the Turbo decoder is 8. It is possible to increase the DLP
by decoding multiple blocks simultaneously.

Table XII also shows that there are several algorithms that
cannot be parallelized. Examples include the interleaver, dein-
terleaver, spreader, despreader, and combiner. However, the
workload of these algorithms is not significant as shown in
Table XI. Therefore we can easily increase system throughput

and power efficiency by exploiting the inherent DLP and TLP
shown in Table XII. From this analysis, we conclude that the
architecture should support both scalar and vector operations
and that the architecture should especially be optimized for
vector operations.

REFERENCES

[1] H.-M. Bluethgen, C. Grassmann, W. Raab, and U. Ramacher, “A pro-
grammable baseband platform for software-defined radio,” presented
at the SDR Tech. Conf. and Product Exposition, Nov. 2004.

[2] J. Fridman and Z. Greenfield, “The TigerSHARC DSP architecture,”
IEEE Micro, vol. 20, no. 1, pp. 66-76, Jan./Feb. 2000.

[3] S. Knowles, “The SOC future is soft,” in IEE Cambridge Branch Sem-
inar, Dec. 2005.

[4] K. v. Berkel, F. Heinle, P. Meuwissen, K. Moerman, and M. Weiss,

“Vector processing as an enabler for software-defined radio in hand-

held devices,” EURASIP J. Appl. Signal Process., vol. 2005, no. 16,

pp- 2613-2625, 2005.

J. Glossner, D. Lancu, L. Jin, E. Hokenek, and M. Moudgill, “A

software-defined communications baseband design,” IEEE Commun.

Mag., vol. 41, no. 1, pp. 120-128, Jan. 2003.

[5

[t}

1322

[6] A. Nilsson, E. Tell, and D. Liu, “An 11 mm? 70 mW fully-pro-
grammable baseband processor for mobile WiMAX and DVB-T/H in
0.12 pm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf., Feb.
2008, pp. 266-267.

[7]1 Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C.
Chakrabarti, and K. Flautner, “SODA: A low-power architecture for
software radio,” in Proc. Int. Symp. Comput. Architecture, Jun. 2006,
pp. 89-101.

[8] A. Duller, G. Panesar, and D. Towner, “Parallel processing—The Pic-
oChip way!,” Commun. Process Arch., pp. 125-138, Sep. 2003.
[9] A. Lodi, A. Cappelli, M. Bocchi, C. Mucci, M. Innocenti, C. D. Bar-

tolomeis, L. Ciccarelli, R. Giansante, A. Deledda, F. Campi, M. Toma,
and R. Guerrieri, “XiSystem: A XiRisc-based SoC with reconfigurable
1/O module,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 85-96,
Jan. 2006.

[10] A. Chun, E. Tsui, I. Chen, H. Honary, and J. Lin, “Application of
Intel reconfigurable architecture to 802.11a, 3G and 4G standards,” pre-
sented at the Circuit and System Symp. Emerging Technologies, Fron-
tiers of Mobile and Wireless Communications, May 2004.

[11] QuickSilver Technology [Online]. Available: http://www.gstech.com

[12] G. Smit, A. Kokkeler, P. Wolkotte, P. Holzenspies, M. Burgwal, and
P. Heysters, “The chameleon architecture for streaming DSP applica-
tions,” EURASIP J. Embedded Syst., vol. 2007, Art. no. 78082.

[13] B. Mei, S. Vernalde, D. Verkest, and R. Lauwereins, “Design method-
ology for a tightly coupled VLIW/reconfigurable matrix architecture:
A case study,” in Design Automation and Test in Europe, 2004, vol. 2,
pp. 21224-21229.

[14] WCDMA for UMTS: Radio Access for Third Generation Mobile Com-
munications, H. Holma and A. Toskala, Eds. Hoboken, NJ: Wiley ,
2000.

[15] P. Roshan and J. Leary, 802.11 Wireless LAN Fundamentals. Indi-
anapolis, IN: Cisco Press, 2003.

[16] D. Talla, L. John, and D. Burger, “Bottlenecks in multimedia pro-
cessing with SIMD style extensions and architectural enhancements,”
IEEE Trans. Comput., vol. 52, no. 8, pp. 1015-1031, Aug. 2003.

[17] H.Hunter and J. Moreno, “A new look at exploiting data parallelism in
embedded systems,” in Proc. Int. Conf. Compilers, Architecture, and
Synthesis for Embedded Syst., Oct. 2003, pp. 159-169.

[18] H. Lee, “A baseband processor for software defined radio terminals,”
Ph.D. thesis, Univ. Michigan, Ann Arbor, MI, 2007.

[19] N.L.Binkertetal., “The M5 simulator: Modeling networked systems,”
IEEE Micro, vol. 26, no. 4, pp. 52-60, Jul./Aug. 2006.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2010

Hyunseok Lee (M’08) received the Ph.D. degree in
computer science and engineering from the Univer-
sity of Michigan, Ann Arbor, in 2007.

He is currently an Assistant Professor in the
Department of Electronics and Communications
Engineering, Kwangwoon University, Seoul, Korea.

e From 1992 to 2008, he participated in the develop-
Sl ment of IS-95, cdma2000, WCDMA, and mobile
WIiMAX systems at Samsung Electronics, Suwon,

M Korea. His research interest includes low-power

signal processing architectures and embedded sys-
tems for wireless communications.

Chaitali Chakrabarti (S’86-M’89-SM’02) is a
Professor of electrical engineering at Arizona State
University, Tempe. Her research interests include
all aspects of low-power embedded systems design
and VLSI architectures and algorithms for signal
processing, image processing, and communications.
Dr. Chakrabarti served as the Technical Com-
mittee Chair of the DISPS subcommittee, IEEE
Signal Processing Society (2006-2007). She is
currently an Associate Editor of the Journal of
VLSI Signal Processing Systems and the IEEE
TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS.

Trevor Mudge (S’74-M’77-SM’84-F’95) received
the Ph.D. degree in computer science from the Uni-
versity of Illinois, Urbana-Champaign.

Since then, he has been at the University of
Michigan, Ann Arbor. He was named the Bredt
Professor of Engineering after a ten-year term as
Director of the Advanced Computer Architecture
Laboratory—a group of a dozen faculty and 80
graduate students. He is an author of numerous
papers on computer architecture, programming
languages, VLSI design, and computer vision. He
has also chaired 40 theses in these areas.

Dr. Mudge is a Fellow of the IEEE, a member of the ACM, the IET, and the
British Computer Society.

